Min-max-min robust combinatorial optimization

نویسندگان

  • Christoph Buchheim
  • Jannis Kurtz
چکیده

The idea of k-adaptability in two-stage robust optimization is to calculate a fixed number k of second-stage policies here-and-now. After the actual scenario is revealed, the best of these policies is selected. This idea leads to a min-max-min problem. In this paper, we consider the case where no first stage variables exist and propose to use this approach to solve combinatorial optimization problems with uncertainty in the objective function. We investigate the complexity of this special case for convex uncertainty sets. We first show that the min-max-min problem is as easy as the underlying certain problem if k is greater than the number of variables and if we can optimize a linear function over the uncertainty set in polynomial time. We also provide an exact and practical oracle-based algorithm to solve the latter problem for any underlying combinatorial problem. On the other hand, we prove that the min-max-min problem is NP-hard for every fixed number k, even when the uncertainty set is a polyhedron, given by an inner description. For the case that k is smaller or equal to the number of variables, we finally propose a fast heuristic algorithm and evaluate its performance. A preliminary version of this paper will appear in the Proceedings of the International Network Optimization Conference 2015 [8].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Min-max-min Robust Combinatorial Optimization Subject to Discrete Uncertainty

We consider combinatorial optimization problems with uncertain objective functions. In the min-max-min robust optimization approach, a fixed number k of feasible solutions is computed such that the respective best of them is optimal in the worst case. The idea is to calculate a set of candidate solutions in a potentially expensive preprocessing and then select the best solution out of this set ...

متن کامل

Min-max and min-max regret versions of combinatorial optimization problems: A survey

Min-max and min-max regret criteria are commonly used to define robust solutions. After motivating the use of these criteria, we present general results. Then, we survey complexity results for the min-max and min-max regret versions of some combinatorial optimization problems: shortest path, spanning tree, assignment, min cut, min s-t cut, knapsack. Since most of these problems are NP -hard, we...

متن کامل

Min-max and min-max regret versions of some combinatorial optimization problems: a survey

Min-max and min-max regret criteria are commonly used to define robust solutions. After motivating the use of these criteria, we present general results. Then, we survey complexity results for the min-max and min-max regret versions of some combinatorial optimization problems: shortest path, spanning tree, assignment, cut, s-t cut, knapsack. Since most of these problems are NP-hard, we also inv...

متن کامل

ANNALES DU LAMSADE N ° 7 Mai 2007 Robustness in OR - DA

Min-max and min-max regret criteria are commonly used to define robust solutions. After motivating the use of these criteria, we present general results. Then, we survey complexity results for the min-max and min-max regret versions of some combinatorial optimization problems: shortest path, spanning tree, assignment, cut, s-t cut, knapsack. Since most of these problems are NP-hard, we also inv...

متن کامل

Robust Combinatorial Optimization under Budgeted-Ellipsoidal Uncertainty∗

In the field of robust optimization uncertain data is modeled by uncertainty sets, i.e. sets which contain all relevant outcomes of the uncertain parameters. The complexity of the related robust problem depends strongly on the shape of the uncertainty set. Two popular classes of uncertainty are budgeted uncertainty and ellipsoidal uncertainty. In this paper we introduce a new uncertainty class ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Program.

دوره 163  شماره 

صفحات  -

تاریخ انتشار 2017